

CERTIFICATE OF ANALYSIS

REPORTED TO Stettler, Town of (Alberta)

You know that the sample you collected after

snowshoeing to site, digging 5 meters, and

racing to get it on a plane so you can submit it

to the lab for time sensitive results needed to

make important and expensive decisions

(whew) is VERY important. We know that too.

5031 - 50 Street Stettler, AB T0C 2L0

ATTENTION Chris Saunders **WORK ORDER** 22G0708

PO NUMBER

2022-07-07 09:00 / 13.6°C **RECEIVED / TEMP REPORTED PROJECT** Distribution System - Biannual Analysis 2022-08-02 10:45

13947 **PROJECT INFO COC NUMBER**

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

It's simple. We figure the more you enjoy with fun and working our engaged team the more members; likely you are to give us continued opportunities to support you.

Ahead of the Curve

regulation Through research, knowledge, and instrumentation, are your analytical centre the technical knowledge you BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at rpshyk@caro.ca

Authorized By:

Regan Pshyk Junior Account Manager

1-888-311-8846 | www.caro.ca

REPORTED TO	Stettler, Town of (Alberta)	WORK ORDER	22G0708
PROJECT	Distribution System - Biannual Analysis	REPORTED	2022-08-02 10:45

Analyte	Result	Guideline	RL	Units	Analyzed	Qualif
GT Hydraulics (22G0708-01) Matrix	:: Water Sampled: 202	22-07-06 10:45				
Acid Herbicides						
2,4-D	< 0.10	MAC = 100	0.10	μg/L	2022-07-19	
MCPA	< 0.02	MAC = 100	0.02	μg/L	2022-07-19	
2,4,5-T	< 0.10	N/A	0.10	μg/L	2022-07-19	
Dicamba	< 0.10	MAC = 120	0.10	μg/L	2022-07-19	
Picloram	< 0.10	MAC = 190	0.10	μg/L	2022-07-19	
Dinoseb	< 0.10	N/A	0.10	μg/L	2022-07-19	
Anions						
Bromate	< 0.010	MAC = 0.01	0.010	mg/L	2022-07-29	
Chloride	10.9	AO ≤ 250	0.50	mg/L	2022-07-09	
Fluoride	0.34	MAC = 1.5		mg/L	2022-07-09	
Nitrate (as N)	< 0.050	MAC = 10	0.050	mg/L	2022-07-09	
Nitrite (as N)	< 0.050	MAC = 1	0.050	mg/L	2022-07-09	
Sulfate	64.1	AO ≤ 500	1.0	mg/L	2022-07-12	
Calculated Parameters						
Chloramines	0.470	MAC = 3	0.0400	mg/L	N/A	
Total Trihalomethanes	0.0669	MAC = 0.1	0.00400		N/A	
Hardness, Total (as CaCO3)	168	None Required	0.541		N/A	
Solids, Total Dissolved	238	AO ≤ 500		mg/L	N/A	
Chlorinated Phenols						
2,4-Dichlorophenol	< 0.00020	AO ≤ 0.0003	0.00020	mg/L	2022-07-12	
2,4,6-Trichlorophenol	< 0.00050	AO ≤ 0.002	0.00050	mg/L	2022-07-12	
2,3,4,6-Tetrachlorophenol	< 0.00050	AO ≤ 0.001	0.00050	mg/L	2022-07-12	
Pentachlorophenol	< 0.00050	AO ≤ 0.03	0.00050	mg/L	2022-07-12	
General Parameters						
Alkalinity, Total (as CaCO3)	129	N/A	2.0	mg/L	2022-07-12	
Bicarbonate (HCO3)	157	N/A	2.0	mg/L	2022-07-12	
Carbonate (CO3)	< 2.0	N/A	2.0	mg/L	2022-07-12	
Hydroxide (OH)	< 2.0	N/A	2.0	mg/L	2022-07-12	
Ammonia, Total (as N)	0.383	None Required	0.050		2022-07-13	
Carbon, Total Organic	4.09	N/A		mg/L	2022-07-14	
Chlorine, Total	1.33	None Required		mg/L	2022-07-08	HT
Chlorine, Free	0.86	N/A		mg/L	2022-07-08	HT
Colour, True	< 5.0	AO ≤ 15		CU	2022-07-08	
Conductivity (EC)	460	N/A		μS/cm	2022-07-13	
Cyanide, Total	< 0.0020	MAC = 0.2	0.0020		2022-07-15	
Nitrilotriacetic Acid	< 0.20	MAC = 0.4		mg/L	2022-07-14	НТ
pH	7.23	7.0-10.5		pH units	2022-07-12	HT
Sulfide, Total	< 0.020	AO ≤ 0.05	0.020		2022-07-12	
Turbidity	0.41	OG < 1		NTU	2022-07-08	

REPORTED TO	Stettler, Town of (Alberta)	WORK ORDER	22G0708
PROJECT	Distribution System - Biannual Analysis	REPORTED	2022-08-02 10:45

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifie
GT Hydraulics (22G0708-01) Matrix: W	ater Sampled: 202	22-07-06 10:45, Cor	ntinued			
Miscellaneous Herbicides, Continued						
Glyphosate	< 0.050	MAC = 0.28	0.050	mg/L	2022-07-20	
Pesticides, Herbicides, and Fungicides						
Atrazine and metabolites	< 0.000100	MAC = 0.005	0.000100	ma/l	2022-07-14	
Azinphos-methyl	< 0.000100	MAC = 0.003	0.000100		2022-07-14	
Bromoxynil	< 0.000200	MAC = 0.005	0.000200		2022-07-14	
Chlorpyrifos	< 0.000200	MAC = 0.003	0.000200		2022-07-14	
Cyanazine	< 0.00010	N/A	0.00010		2022-07-14	
Diazinon	< 0.000100	MAC = 0.02	0.000100		2022-07-14	
Diclofop-methyl	< 0.000100	MAC = 0.009	0.000020		2022-07-14	
Dimethoate	< 0.000100	MAC = 0.009	0.000100		2022-07-14	
	< 0.000200	MAC = 0.02	0.000200			
Diuron					2022-07-14	
Malathion	< 0.000100 < 0.000050	MAC = 0.19	0.000100		2022-07-14	
Methoxychlor Metalophlor		N/A	0.000050		2022-07-14	
Metolachlor	< 0.000100	MAC = 0.05	0.000100		2022-07-14	
Metribuzin	< 0.000200	MAC = 0.08	0.000200		2022-07-14	
Phorate	< 0.000100	MAC = 0.002	0.000100		2022-07-14	
Simazine	< 0.000200	MAC = 0.01	0.000200		2022-07-14	
Terbufos	< 0.000100	MAC = 0.001	0.000100		2022-07-14	
Triallate	< 0.000100	N/A	0.000100		2022-07-14	
Trifluralin	< 0.000200	MAC = 0.045	0.000200	mg/L	2022-07-14	
Polycyclic Aromatic Hydrocarbons (PAH)						
Acenaphthene	< 0.050	N/A	0.050	μg/L	2022-07-11	
Acenaphthylene	< 0.200	N/A	0.200	μg/L	2022-07-11	
Anthracene	< 0.010	N/A	0.010	μg/L	2022-07-11	
Benz(a)anthracene	< 0.010	N/A	0.010	μg/L	2022-07-11	
Benzo(a)pyrene	< 0.010	MAC = 0.04	0.010		2022-07-11	
Benzo(b+j)fluoranthene	< 0.050	N/A	0.050		2022-07-11	
Benzo(g,h,i)perylene	< 0.050	N/A	0.050	µg/L	2022-07-11	
Benzo(k)fluoranthene	< 0.050	N/A	0.050		2022-07-11	
2-Chloronaphthalene	< 0.100	N/A	0.100		2022-07-11	
Chrysene	< 0.050	N/A	0.050		2022-07-11	
Dibenz(a,h)anthracene	< 0.010	N/A	0.010		2022-07-11	
Fluoranthene	< 0.030	N/A	0.030		2022-07-11	
Fluorene	< 0.050	N/A	0.050	· -	2022-07-11	
Indeno(1,2,3-cd)pyrene	< 0.050	N/A	0.050		2022-07-11	
1-Methylnaphthalene	< 0.100	N/A	0.100		2022-07-11	
2-Methylnaphthalene	< 0.100	N/A	0.100		2022-07-11	
Naphthalene	< 0.200	N/A	0.200		2022-07-11	
Phenanthrene	< 0.100	N/A N/A	0.200		2022-07-11	
	< 0.100	N/A N/A	0.100		2022-07-11	
Pyrene Quinoline	< 0.020	N/A			2022-07-11	
	< 0.050	IN/A	0.050 50-140	· -	2022-07-11 2022-07- <u>11</u>	
Surrogate: Naphthalene-d8						

REPORTED TO	Stettler, Town of (Alberta)	WORK ORDER	22G0708
PROJECT	Distribution System - Biannual Analysis	REPORTED	2022-08-02 10:45

Analyte	Result	Guideline	RL	Units	Analyzed	Qualifie
GT Hydraulics (22G0708-01) Matr	rix: Water Sampled: 20	22-07-06 10:45, Con	tinued			
Polycyclic Aromatic Hydrocarbons (P.	AH), Continued					
Surrogate: Perylene-d12	121		50-140	%	2022-07-11	
Total Metals						
Aluminum, total	0.0340	OG < 0.1	0.0050	ma/l	2022 07 10	
Antimony, total	< 0.0020	MAC = 0.006	0.0030		2022-07-10	
Arsenic, total	0.00020	MAC = 0.000	0.00020		2022-07-10	
Barium, total	0.0906	MAC = 2	0.0050		2022-07-10	
Boron, total	< 0.0500	MAC = 5	0.0500		2022-07-10	
Cadmium, total	< 0.010	MAC = 5	0.0300		2022-07-10	
Calcium, total	43.2	None Required		mg/L	2022-07-10	
Chromium, total	< 0.00050	MAC = 0.05	0.00050		2022-07-10	
Copper, total	0.0136	MAC = 2	0.00030		2022-07-10	
Iron, total	< 0.010	AO ≤ 0.3	0.00040		2022-07-10	
Lead, total	< 0.00020	MAC = 0.005	0.00020		2022-07-10	
Magnesium, total	14.7	None Required	0.00020		2022-07-10	
Manganese, total	0.0105	MAC = 0.12	0.00020		2022-07-10	
Mercury, total	< 0.010	MAC = 0.12	0.00020		2022-07-10	
Selenium, total						
<u>'</u>	< 0.00050	MAC = 0.05 N/A	0.00050		2022-07-10	
Silver, total	< 0.050		0.050		2022-07-10	
Sodium, total	23.6	AO ≤ 200		mg/L	2022-07-10	
Uranium, total	0.152 < 0.0040	MAC = 20 AO ≤ 5	0.020		2022-07-10	
Zinc, total	< 0.0040	AO 2 5	0.0040	mg/L	2022-07-10	
olatile Organic Compounds (VOC)						
Benzene	< 0.5	MAC = 5	0.5	μg/L	2022-07-08	
Bromodichloromethane	3.2	N/A	1.0		2022-07-08	
Bromoform	< 1.0	N/A	1.0		2022-07-08	
Carbon tetrachloride	< 0.5	MAC = 2	0.5		2022-07-08	
Chlorobenzene	< 1.0	AO ≤ 30	1.0		2022-07-08	
Chloroethane	< 2.0	N/A	2.0	μg/L	2022-07-08	
Chloroform	63.7	N/A		μg/L	2022-07-08	
Dibromochloromethane	< 1.0	N/A		μg/L	2022-07-08	
1,2-Dibromoethane	< 0.3	N/A		μg/L	2022-07-08	
Dibromomethane	< 1.0	N/A		μg/L	2022-07-08	
1,2-Dichlorobenzene	< 0.5	AO ≤ 3		μg/L	2022-07-08	
1,3-Dichlorobenzene	< 1.0	N/A		μg/L	2022-07-08	
1,4-Dichlorobenzene	< 1.0	AO ≤ 1		μg/L	2022-07-08	
1,1-Dichloroethane	< 1.0	N/A		μg/L	2022-07-08	
1,2-Dichloroethane	< 1.0	MAC = 5		μg/L	2022-07-08	
1,1-Dichloroethylene	< 1.0	MAC = 14		μg/L	2022-07-08	
cis-1,2-Dichloroethylene	< 1.0	N/A		μg/L	2022-07-08	
trans-1,2-Dichloroethylene	< 1.0	N/A		μg/L	2022-07-08	
Dichloromethane	< 3.0	MAC = 50		μg/L	2022-07-08	
1,2-Dichloropropane	< 1.0	N/A		μg/L	2022-07- <u>08</u>	
.,_ 2.55.5p.opano		hout Results Obvio		- 'E-		Page 4

REPORTED TO Stettler, Town of (Alberta)

PROJECT Distribution System - Biannual Analysis

WORK ORDER REPORTED 22G0708

ED 2022-08-02 10:45

Analyte	Result	Guideline	RL Units	Analyzed Qualifier
GT Hydraulics (22G0708-01) Matrix: W	ater Sampled: 202	2-07-06 10:45, Coi	ntinued	
Volatile Organic Compounds (VOC), Contin	ued			
1,3-Dichloropropene (cis + trans)	< 1.0	N/A	1.0 μg/L	2022-07-08
Ethylbenzene	< 1.0	AO ≤ 1.6	1.0 µg/L	2022-07-08
Methyl tert-butyl ether	< 1.0	AO ≤ 15	1.0 µg/L	2022-07-08
Styrene	< 1.0	N/A	1.0 µg/L	2022-07-08
1,1,2,2-Tetrachloroethane	< 0.5	N/A	0.5 μg/L	2022-07-08
Tetrachloroethylene	< 1.0	MAC = 10	1.0 μg/L	2022-07-08
Toluene	< 1.0	MAC = 60	1.0 μg/L	2022-07-08
1,1,1-Trichloroethane	< 1.0	N/A	1.0 μg/L	2022-07-08
1,1,2-Trichloroethane	< 1.0	N/A	1.0 μg/L	2022-07-08
Trichloroethylene	< 1.0	MAC = 5	1.0 μg/L	2022-07-08
Trichlorofluoromethane	< 1.0	N/A	1.0 μg/L	2022-07-08
Vinyl chloride	< 1.0	MAC = 2	1.0 μg/L	2022-07-08
Xylenes (total)	< 2.0	AO ≤ 20	2.0 µg/L	2022-07-08
Surrogate: Toluene-d8	94		70-130 %	2022-07-08
Surrogate: 4-Bromofluorobenzene	83		70-130 %	2022-07-08

Sample Qualifiers:

HT1 The sample was prepared and/or analyzed past the recommended holding time.

HT2 The 15 minute recommended holding time (from sampling to analysis) has been exceeded - field analysis is recommended.

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Stettler, Town of (Alberta)

PROJECT Distribution System - Biannual Analysis

WORK ORDER

22G0708

REPORTED 2022-08-02 10:45

Analysis Description	Method Ref.	Technique	Accredited	Location
Acid Herbicides in Water in Water	In-House	N/A	✓	Richmond
Alkalinity in Water	SM 2320 B* (2017)	Titration with H2SO4	✓	Edmonton
Ammonia, Total in Water	SM 4500-NH3 D* (2017)	Ion Selective Electrode	✓	Edmonton
Anions in Water	SM 4110 B (2017)	Ion Chromatography	✓	Edmonton
Bromate in Water	SM 4110 B (2017)	Ion Chromatography	✓	Sublet
Carbon, Total Organic in Water	SM 5310 B (2017)	Combustion, Infrared CO2 Detection	✓	Kelowna
Chlorine, Free in Water	SM 4500-CI G (2017)	Colorimetry (DPD)	✓	Edmonton
Chlorine, Total in Water	SM 4500-CI G (2017)	Colorimetry (DPD)	✓	Edmonton
Colour, True in Water	SM 2120 C (2017)	Spectrophotometry (456 nm)	✓	Edmonton
Conductivity in Water	SM 2510 B (2017)	Conductivity Meter	✓	Edmonton
Cyanide, SAD in Water	ASTM D7511-12	Flow Injection with In-Line UV Digestion and Amperometry	✓	Kelowna
Glyphosate in Water	EPA 547*	Direct Aqueous Injection HPLC with Post-Column Derivatization and Fluorescence Detection	✓	Richmond
Hardness in Water	SM 2340 B (2017)	Calculation: 2.497 [diss Ca] + 4.118 [diss Mg]	✓	N/A
Mercury, total in Water	EPA 245.7*	BrCl2 Oxidation / Cold Vapor Atomic Fluorescence Spectrometry (CVAFS)	✓	Richmond
Nitrilotriacetic Acid in Water	EPA 430.1	Manual Colorimetry (Zinc-Zincon)		Kelowna
Pesticides in Water	EPA 3510C* / EPA 8270D*	Liquid-Liquid DCM Extraction (B/N) / GC-MSD (SIM)	✓	Richmond
pH in Water	SM 4500-H+ B (2017)	Electrometry	✓	Edmonton
Phenols, Chlorinated in Water	EPA 3510C* / EPA 8270D	Liquid-Liquid DCM Extraction (Acidic) / GC-MSD (SIM)	✓	Richmond
Polycyclic Aromatic Hydrocarbons in Water	EPA 3511* / EPA 8270D	Hexane MicroExtraction (Base/Neutral) / GC-MSD (SIM)		Edmonton
Solids, Total Dissolved in Water	SM 1030 E (2017)	SM 1030 E (2011)	✓	N/A
Sulfide, Total in Water	SM 4500-S2 D* (2017)	Colorimetry (Methylene Blue)	✓	Edmonton
Total Metals in Water	EPA 200.2 / EPA 6020B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond
Turbidity in Water	SM 2130 B (2017)	Nephelometry	✓	Edmonton
Volatile Organic Compounds in Water	EPA 5030B / EPA 8260D	Purge&Trap / GC-MSD (SIM)		Edmonton

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

< Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

AO Aesthetic Objective

CU Colour Units (referenced against a platinum cobalt standard)

MAC Maximum Acceptable Concentration (health based)

mg/L Milligrams per litre

NTU Nephelometric Turbidity Units
OG Operational Guideline (treated water)
pH units pH < 7 = acidic, ph > 7 = basic

μg/L Micrograms per litre

μS/cm Microsiemens per centimetre

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO Stettler, Town of (Alberta)

PROJECT Distribution System - Biannual Analysis

ual Analysis REPORTED

WORK ORDER

22G0708

2022-08-02 10:45

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing. The quality control (QC) data is available upon request

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted **red**. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:rpshyk@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.